
Un sistema estable tiende a lo largo del tiempo a un punto, u órbita, según su dimensión (atractor o sumidero).
Un sistema inestable se escapa de los atractores.
Un sistema caótico manifiesta los dos comportamientos.
Por un lado, existe un atractor por el que el sistema se ve atraído, pero a la vez, hay "fuerzas" que lo alejan de éste. De esa manera, el sistema permanece confinado en una zona de su espacio de estados, pero sin tender a un atractor fijo.
Una de las mayores características de un sistema inestable es que tiene una gran dependencia de las condiciones iniciales. De un sistema del que se conocen sus ecuaciones características, y con unas condiciones iniciales fijas, se puede conocer exactamente su evolución en el tiempo. Pero en el caso de los sistemas caóticos, una mínima diferencia en esas condiciones hace que el sistema evolucione de manera totalmente distinta. Ejemplos de tales sistemas incluyen la atmósfer terrestre, el Sistema Solar, las placas tectónicas, los fluidos en régimen turbulento y los crecimientos de población.
Efecto mariposa:
x’ = – ax + ay
x’, y’, z’, representan las primeras derivadas en las variables x, y, z.
a , b, y r son constantes, relacionadas con las condiciones climáticas; tales como presión, temperatura, etc.
Pero Lorenz recibió una gran sorpresa cuando vió que las minima diferencia en los datos de salida ( usar una diferencia de 0.0000000000001), el resultado final cambiaba enormemente, por lo que era imposible la idea de Lorenz de hacer prediciones meteorologicas a largo plazo.
Los datos empíricos que proporcionan las estaciones meteorológicas tienen errores inevitables, aunque sólo sea porque hay un número limitado de observatorios incapaces de cubrir todos los puntos de nuestro planeta. esto hace que las predicciones se vayan desviando con respecto al comportamiento real del sistema.
Lorenz intentó explicar esta idea mediante un ejemplo hipotético. Sugirió que imaginásemos a un meteorólogo que hubiera conseguido hacer una predicción muy exacta del comportamiento de la atmósfera, mediante cálculos muy precisos y a partir de datos muy exactos. Podría encontrarse una predicción totalmente errónea por no haber tenido en cuenta el aleteo de una mariposa en el otro lado del planeta. Ese simple aleteo podría introducir perturbaciones en el sistema que llevaran a la predicción de una tormenta.
Esta interrelación de causa-efecto se da en todos los eventos de la vida. Un pequeño cambio puede generar grandes resultados o poéticamente: "el aleteo de una mariposa en Hong Kong puede desatar una tormenta en Nueva York".
La consecuencia práctica del efecto mariposa es que en sistemas complejos tales como el estado del tiempo o la bolsa de valores es muy difícil predecir con seguridad en un mediano rango de tiempo. Los modelos finitos que tratan de simular estos sistemas necesariamente descartan información acerca del sistema y los eventos asociados a él. Estos errores son magnificados en cada unidad de tiempo simulada hasta que el error resultante llega a exceder el ciento por ciento.
Debe también tenerse en cuenta la relación del efecto mariposa, con el concepto del Solipsismo, término que proviene de unas palabras latinas que significan "Sólo uno mismo" utilizado en la novela de Ciencia Ficción de Ursula K. LeGuin The Late of Heaven y en el film del mismo nombre.
No hay comentarios:
Publicar un comentario